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Based on numerical solution of the dynamics equations of a monodisperse gas suspension with allowance for
the interphase forces of aerodynamic drag, virtual masses, and the forces caused by nonstationary effects
around particles, the influence of different forms of low-frequency harmonic and anharmonic oscillations of
the gas on the motion of porous particles in the presence of heat and mass transfer accompanied by deepen-
ing of the evaporation zone has been investigated. The dependences of the solid-phase motion, kinetics of
evaporation-zone deepening, and heat and mass transfer on the parameters of gas oscillations have been es-
tablished. It is shown that on removal of free moisture, oscillations at certain parameters lead to enhancement
of interphase heat and mass transfer.

The hydrodynamic and thermal conditions under which the phases interact in disperse systems exert a decisive
influence on the intensity of heat- and mass-exchange processes and the efficiency of apparatuses. Nonstationary flows
of a carrying phase and oscillations at certain parameters lead to enhancement of a number of technological processes
(dissolution, extraction, drying, combustion, etc.). As a rule, the processes of heat and mass transfer in disperse media
are energy consuming, and therefore an increase in their efficiency and economy of energy resources are presently
pressing scientific-research problems. This places in the forefront the investigations aimed at creating efficient nonsta-
tionary, discrete-pulsed modes of energy input into disperse systems, wave and resonance modes of flow of a carrying
phase with a large amplitude of velocity and pressure fluctuations.

In engineering, the oscillations of a carrying medium are produced by different devices. Among the most ef-
ficient generators of high-temperature, strongly pulsed gas flows are the pulse combustion chambers. Such nonstation-
ary flows may be used to implement power-efficient technologies of drying and thermoprocessing of disperse materials
and solutions [1–5].

The suspended state of a dispersed phase is provided by the forces of hydrodynamic drag. In the case of a
constant velocity of particles, they experience the action of the forces attributable to a pressure gradient and to the dif-
ferences between the velocities and densities of phases. When particles move in a pulsed mode, the above forces are
supplemented with the forces caused by the unsteady-state character of the motion of phases. Ranking among them is
the force of virtual masses due to inertial effects and the "hereditary" Basset force due to the nonstationary effects in
the carrying phase (to the nonstationarity of the boundary layer around particles). A considerable number of investiga-
tions are known [5–14] in which the results of studying pulsed devices and the influence of harmonic pulsations of
the carrying phase (gas and liquid) on the motion of particles and heat and mass transfer are given. It should be noted
that, in the majority of cases, these results are valid only for the motion of single particles. The condition of the
smallness of the volumetric concentration of particles is more restrictive in comparison with the absence of the inter-
action of particles, which for a monodisperse mixture can be limited by the value ε2 ≤ 0.3. It should be noted that the
results of investigations of a pulsed motion of particles in liquids cannot be directly generalized to the case of motion
and heat and mass transfer in a pulsed gas flow with a larger amplitude of velocity oscillations.

In [6], the influence of the parameters of harmonic oscillations of a gas on motion and interphase heat trans-
fer has been investigated. In what follows, the wave motion of porous particles in an anharmonic oscillating gas flow
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and the influence of its parameters on heat and mass transfer accompanied by deepening of the zone of evaporation
are studied.

We will consider a one-dimensional oscillating motion of a monodisperse mixture in the direction opposite to
the action of the gravity force, provided that the carrying-phase (gas) velocity changes according to the periodic de-
pendence
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where χ = ω′′/(ω′ + ω′′), 0 < χ < 1; ω′ = ω/2χ, ω′′ = ω/2(1 – χ). The parameter χ accounts for the relationship be-
tween the duration of the first and second parts of the period. This representation of gas velocity allows one to assign
harmonic and anharmonic, as well as pulsed (sinusoidal, rectangular) forms of gas oscillations.

We will consider the case where the interaction of particles with each other can be neglected by virtue of the
fact that their volumetric concentration is not very high. Within the framework of interpenetrating continua, the volu-
metric concentration of a solid phase will be represented as a "frozen" one.

Subject to the assumptions made, the equations of nonstationary motion of phases can be presented in the
form [8]

ε1 ρ1 
dv1
dt

 = − ∇p − nf + ε1 ρ1g + nj21 (v1R − v1) , (2)

ε2 ρ2 
dv2
dt

 = nf + ε2 ρ2g + nj12 (v2R − v2) . (3)

The velocities v1R and v2R determine the average momentum of the mass coming into the carrying phase as a result
of phase transitions. In the majority of practical cases, the change in the momentum of the mass of phase conversion
upon transition through the interphase boundary can be neglected:  j12(v2R − v1R) << f.

Further it is assumed that v1R = v2R – v2. The force f acting on a particle in a disperse mixture is defined as
the force acting on a certain test particle. When the equations of motion are considered in a noninertial frame moving
with the gas velocity v1, the test particle has a velocity v21 = v2 – v1. An analysis of the acting forces results in iso-
lation of the following components: fA, fµ, fm, and fB. Then we may write

f = fA + fm + fµ + fB = fA + f
^
 ,   f
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On substituting (4) into (2) and (3), we obtain the following equations of the momenta of phases:

ρ1 
dv1

dt
 = − ∇p − nf

^
 + ρ1 g + nj21 (v1 − v1) , (5)

ε2 ρ2 
dv2

dt
 = − ε2∇p + ε1nf

^
 + ε2 ρ2g + ε2nj21 (v2 − v1) , (6)

ε1 + ε2 = 1 . (7)

Bringing out the pressure gradient from Eq. (5) and substituting it into (6), we obtain
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ε2 ρ2 
dv2

dt
 = ε2 ρ1

dv1

dt
 + nf

^
 + ε2 (ρ2 − ρ1) g . (8)

The number of particles per unit volume is

n = 
3ε2

4πR
3 . (9)

The forces of hydrodynamical drag and of virtual masses for the disperse mixture will be represented respec-
tively as
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The force attributable to the nonstationarity of the viscous boundary layer around the particles (the "hereditary" Basset
force) will be defined by the expression [14]
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Calculation of the integral for the Basset force in the above expression complicates the solution of the problem. It can
be found by using the theorem of the mean. Following [6, 13], we find
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Then, substituting expressions (10), (11), and (13) into (8), we obtain
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Here, the hydrodynamic drag factor was determined with allowance for the constrained motion from the following de-
pendence [8]:
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Low-frequency oscillations of the gas are considered when the amplitude of the displacement of the medium
is larger than the diameter of the solid particles and the process of flow around them can be considered quasi-station-
ary, i.e., the field of the gas velocities at each moment of time obeys the laws of a stationary flow. This condition is
usually met in installations operating at low frequencies [6].

The process of heat and mass transfer in capillary-porous bodies is often accompanied by deepening of the
evaporation zone. This occurs if steam removal is so intense that the capillary mechanism of transfer fails to supply
liquid to the pores dried. A mathematical description of such a process is based on the Stefan-type problem. It should
be noted that generally evaporation takes place not only on a moving front but also in a certain zone. This phenome-
non is attributable, in particular, to different forms of bonding between moisture and material.

A great number of investigations have been devoted to modeling and studying the processes of heat and mass
exchange with the mobile zone (boundary) of phase transition [15–21]. In [15], a system of equations of interrelated
heat and mass transfer was obtained. For the process considered, general equations are written for the dry and moist
zones, and the phase-change number is represented in the form of a discontinuous function and its dependence on the
process parameters is not taken into account. This approach presents difficulties for implementation. In the simplest
models, e.g., [16–20], the influence of steam filtration in the dry zone is neglected or the temperature at the evapora-
tion boundary is assumed constant.

In the present work, an approximate method of calculating the processes of heat and mass transfer in capil-
lary-porous particles is considered on the assumption of the evaporation-zone deepening (Fig. 1). In a heated gas
flow, a heat flux acts on the surface of a capillary-porous particle. It is assumed that heat is supplied to the evapo-
ration boundary by heat conduction from the dry layer of the material, and it is spent on moisture vaporization. An
excess steam pressure develops inside the capillary-porous body, which causes the steam to filtrate from the evapora-
tion boundary to the surface. As a result, the rate of drying is determined by the heat and filtration resistances. The
transfer gradients in the moist zone of the body are neglected. The temperature and pressure at the evaporation
boundary are interrelated as the saturated steam parameters by the Clapeyron–Clausius equation. In the dry zone, the
body temperature depends linearly on the coordinate. Subject to the assumptions adopted, the equation for the rate of
the evaporation-boundary deepening under the boundary condition of the 3rd kind on the surface q = α(T∞ – TR)
can be written as


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From taking into account the fact that heat from the material surface is transferred into the interior by heat
conduction, it follows that

Rα (T∞ − TR) = 
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 (TR − Tξ) , (18)
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Fig. 1. Toward a statement of the problem of heat and mass transfer in a po-
rous particle.

850



After substituting (19) into (17) and performing simple algebra, we obtain
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where a = cdrρdr and b = ddrρdr + cwu.
The change in the moisture content of the particles is related to the displacement evaporation zone by the relation
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whereas the moisture content is connected with the coordinate of the evaporation front by the relation
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 . (22)

Upon integration of Eq. (21), we may determine the time of extension of the evaporation zone into the body,
i.e., the time of drying. Under the boundary condition of the first kind, i.e., at TR = T∞ = const, the time of the
evaporation boundary displacement is defined by the expression
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The steam flow in the dry zone from the evaporation boundary to the surface can be represented as

qst = 
4πρstKst

µst
 

Rξ
ξ − R

 (pR − pξ) . (24)

Then
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For the flow of steam on the body surface we may write
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R

R (ξ − R)
 (pR − pξ) = β (pR − p∞) , (26)

whence

pR = 
Dξpξ − βR (ξ − R) p∞

Dξ − βR (ξ − R)
 , (27)

where D = ρstKst/µst. At ξ = R we have pR = pξ. On substituting (27) into (25), we obtain

dξ
dt

 = − 
βDR

2
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The dependence of the steam pressure on temperature at the evaporation boundary is determined by the
Clayperon–Clausius equation:

1
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R
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whence, provided that r(Tξ) = const, it follows that
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where p~ = 6.4072⋅1010 Pa and T
~

 = 4996 K. Thus, we have three equations, (20), (28), and (30), with three unknowns,
pξ, Tξ, and ξ. From this system of equations, we can determine the temperature Tξ at the evaporation boundary as a
function of its coordinate ξ. To do this, we equate the right-hand sides of Eqs. (20) and (28) and, after substituting
(30) and rearranging, we write
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The transcendental equation (31), on being represented as Tξ = ϕ(Tξ), will be solved by the method of suc-
cessive approximations. The sufficient conditions of the iterative convergence to the equation root are as follows: in a
certain vicinity of the root the function ϕ(Tξ) is continuous, and it satisfies the "compression" condition ϕ′(Tξ) < 1.
Its derivative is found to be
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where X = ACp~ [B (T∞ – Tξ) + b (Tξ – T20) + ur]. It can be shown that in the investigated region of parameters the
condition ϕ′(Tξ) < 1 is fulfilled. The average temperature of the particle is

T
__
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aTR (R3

 − ξ3) + bTξξ
3

a (R3
 − ξ3) + bξ3  . (33)

The particle density is

ρ2 (t) = ρdr + 
ξ3

R
3 u . (34)

As has already been noted, in this case the process of heat transfer can be considered quasi-stationary, and the Nusselt
number can be determined from the dependence Nu = 2 + 0.55Re0.5Pr0.33. The time-averaged Nusselt number was
found from the expression

Nu
___

 = 
1
∆t

 ∫ 
∆t

Nu dt . (35)
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The initial conditions at t = 0 are: x = 0, v2 = dx/dt = 0, T2 = T20, T1 = T10, v1 = v1(0), v2 = 0, U = U0, and ξ = R.
We have obtained the numerical solution of differential equations (14), (15), and (20) at the constant parame-

ters T20 = 293 K; ε1 = 0.99; cw = 4190 J/(kg⋅K); r = 2.25⋅106 J/kg, and p∞ = 20 kPa.
Let us investigate the nonstationary wave motion of porous particles in an oscillating gas flow with allowance

for the internal heat and mass transfer accompanied by deepening of the evaporation zone. In [6], an estimation was
made for the contribution of the forces acting on particles in a pulsed gas flow. The gas velocity is a function of time
(1) that specifies its periodic (harmonic and anharmonic) oscillations. In a harmonically oscillating gas flow, when the
velocity changes according to the sinusoidal dependence, the particles undergo a wavy motion. The modulus of the
relative velocity of the phases increases as against the velocity of particles in a stationary flow in which the difference
between the velocities of the phases is appreciable only over the acceleration path of the particles. A similar behavior
of particles is also observed in the case of periodic gas oscillations of rectangular form. Here, the relative velocity of
phases increases as compared to the case of sinusoidal gas oscillations. As a result, the periodic gas oscillations of rec-
tangular form with a larger velocity amplitude lead to enhancement of heat and mass transfer on removal of a free and
loosely bound moisture, i.e., in solving an exterior problem. This is clearly demonstrated by the time dependences of
the averaged Nusselt number (Fig. 2) and of the moisture content of particles under the indicated gas oscillation con-
ditions (Fig. 3). Therefore, to attain a high heat- and mass-transfer intensity, in particular, in the processes of drying
and thermoprocessing of finely divided particles, it is most worthwhile to apply gas flow interrupters of slit and valve
types that ensure a rectangular form of gas oscillations. The efficiency of such interrupters in liquefaction of disperse
materials is noted in [22].

With an increase in the intradiffusion resistance, the influence of hydrodynamic drag factors on mass transfer
decreases, which is to be taken into account in selecting an energy-efficient regime of drying.

Further, we will consider the pulsed effect of a gas on porous particles and its influence on the heat and mass
transfer which is accompanied by evaporation-zone deepening. Such an effect represents a sinusoidal form of gas-ve-
locity fluctuations in the first part of the period and virtually an absence of gas flow rate in its second part at a gas-
velocity close to zero. Pulsed modes of thermoprocessing can be very efficient when processing is arranged in a
suspended (fluidized) bed of finely divided materials, as well as dispersed thermolabile products and materials with an
appreciable intradiffusion resistance.

From the time dependences of the velocities of phases depicted in Fig. 4, it follows that the pulsed effect of
the gas flow makes the particles ascend, but when gas supply is stopped, the particles are settled, and thus the cycles
are repeated. With a decrease in the frequency of the gas pulses, the time of immobile state of the particles, i.e., the
rest time, increases.

Fig. 2. Average Nusselt number vs. time (v
_

1 = 20 m/sec): 1) v1
a = v1

a ′ = v1
a ′′ =

0; 2) v1
a = 20 m/sec, sinusoidal form of gas oscillations; 3) rectangular form

(ω = 100 Hz, χ = 0.5, d = 6⋅10–4 m, ρdr = 900 kg/m3, u = 450 kg/m2; cdr =
1200 J/(kg⋅K), λ = 0.6 W/(m⋅K), D = 5⋅10–8 sec, T1 = 523 K).

Fig. 3. Moisture content of particles vs. time: 1, 3) v1
a = 0; 2, 4) 20 m/sec [1,

2) D = 5⋅10–8; 3, 4) 5⋅10–12 sec]; 5) rectangular form of gas oscillations at the
parameters corresponding to curve 1. Remaining parameters are the same as in
Fig. 2.
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From the time dependences of the evaporation-zone deepening (Fig. 5) and of the moisture content of parti-
cles (Fig. 6), it is seen that with an increase in the internal resistance to steam motion, the influence of the frequency
of pulses on the mass-transfer intensity is decreased. Acceleration of the evaporation-boundary deepening is condi-
tioned by the spherical shape of the particles. Therefore, for materials with a rather high internal resistance to mass
transfer, the mode with a low frequency of gas pulses may turn out to be energetically favorable. In the given case,
as is seen from Fig. 6, the rectangular form of gas oscillations ensures a higher mass-transfer intensity. However, it
should be kept in mind that such a mode leads to higher ascending of particles, after which they begin to descend. In
particular, such a mode can be implemented in a bed of material on periodic successive suspension of individual zones
of the bed with a specified frequency of gas supply.

At high values of the permeability of porous particles, the temperature at the evaporation boundary, on its
deepening, remains virtually constant and equal to the temperature of adiabatic saturation (wet bulb temperature). In
the case of low permeability of particles, as the evaporation zone extends into the interior, the temperature on its
evaporation boundary is increased considerably, and it is of oscillating character (Fig. 7). The thermophysical parame-
ters of a porous medium and the mode of heat transfer exert a substantial influence on temperature on the receding
evaporation surface and on the velocity of the latter. Therefore, it is not always correct to assume the temperature at

Fig. 4. Velocity of the gas (1) and particles (2) vs. time at χ = 0.2, ω = 1 Hz,
v1

a ′ = 30 m/sec, v1
a ′′ = 0; v

_
1 = 0.01 m/sec, d = 3⋅10–3 m, D = 5⋅10–8 sec, T1

= 523 K, ρdr = 1200 kg/m3, and u = 450 kg/m3.

Fig. 5. Change in time of the evaporation-boundary coordinate at D = 5⋅10–13

sec: 1) χ = 0.2, ω = 1; 2) 0.1 and 0.5 Hz; at D = 5⋅10–8 sec: 3) ξ = 0.2, ω
= 1; 4) 0.1 and 0.5 Hz. Remaining parameters are the same as in Fig. 4.

Fig. 6. Kinetics of the drying of particles in pulsed gas action. Curves 1–4
correspond to the parameters of the curves of Fig. 5; 5) rectangular form of
gas oscillations at the parameters corresponding to curve 4.

Fig. 7. Temperature at the evaporation boundary vs. time: 1) D = 5⋅10–11 sec;
2) 5⋅10–13; χ = 0.2; ω = 1 Hz.
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the evaporation boundary to be constant and equal to the temperature of adiabatic saturation, which is to be taken into
account in solving such kind of heat- and mass-transfer problems.

The results presented can be useful in calculating and designing heat- and mass-transfer apparatuses with
pulsed gas input.

This work was carried out with financial support from the Basic Research Foundation of the Republic of Be-
larus, grant T04-026.

NOTATION

c, heat capacity, J/(kg⋅K); d, diameter of particles, m; f, force per particle, N; fA, fµ, fm, and fB, buoyancy
(Archimedean) force, force attributable to the viscosity of the carrying phase, virtual masses due to inertial effects, and
the Basset force due to the nonstationarity of the viscous boundary layer around particles, N; g, free fall acceleration,
m/sec2; j12 = –j21, evaporation intensity, kg/sec; Kst, factor of stream permeability in the dry zone of the particle, m2;
m, number of the period, m = 0, 1, 2, ...; n, number density of particles, m–3; Nu, Nusselt number; p, gas pressure,
Pa; Pr, Prandtl number; r, specific heat of vaporization, J/kg; R, radius of particles, m; R

~
, gas constant, J/(kg⋅K); Re,

Reynolds number; t, time, sec; T, temperature, K; u and U, moisture content of the body, kg/m3, kg/kg; v, velocity,
m/sec; x, vertical coordinate, m; α and β, heat- and mass-transfer coefficients, W/(m2⋅K) and kg/(m2⋅sec⋅Pa); ζ, coef-
ficient of hydrodynamic drag; ε1, porosity; ε2, volumetric concentration of particles; λ, thermal conductivity of material
in the dry zone, W/(m⋅K); µ and ν, dynamic and kinematic viscosities, Pa⋅sec and m2/sec; ξ, running coordinate of the
evaporation boundary, m; ρ, density, kg/m3; τ, time (0 ≤ τ ≤ t), sec; ω, frequency, Hz. Subscripts: 1 and 2, gas and
solid particles, respectively; a, amplitude; w, moisture (water); m, virtual mass; st, steam; dr, dry material; R, on the
particle surface; ξ, evaporation boundary; 0, initial value; overbar, average value; ′, ′′, the first and second parts of the
period; ∞, environment.
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